Interpolating a function between two known values, if it can be assumed that the function can be simulated by general exponential decay.

Given

- We know, or can measure, the values of the function at two points, t₁ and t₂
- We can make the assumption that the function follows exponential decay of the type $F(t) = ae^{-bt}$ (between the two points t_1 and t_2)
- We want to evaluate the function at some time t=t₁₋₂ (between t₁ and t₂)

Solution

The function at the two points, t_1 and t_2 , can be written as:

$$F_1 = ae^{-bt_1}$$
 (1) and $F_2 = ae^{-bt_2}$ (2)

Dividing F_1 by F_2 we have,

$$\frac{F_1}{F_2} = \frac{ae^{-bt_1}}{ae^{-bt_2}} = e^{-bt_1 - (-bt_2)} = e^{b(t_2 - t_1)}$$
 (3)

Solving this equation for b we get,

$$\frac{F_1}{F_2} = e^{b(t_2 - t_1)}$$
, $\ln\left[\frac{F_1}{F_2}\right] = b(t_2 - t_1)$, $b = \frac{\ln\left[\frac{F_1}{F_2}\right]}{(t_2 - t_1)}$ (4)

Using the original equation (1) for F_1 , and solving for a we have

$$a = \frac{F_1}{e^{-bt_1}} = F_1 e^{bt_1} = F_1 e^{\frac{\ln\left[\frac{F_1}{F_2}\right]}{(t_2 - t_1)} t_1}$$
 (5)

Now, knowing a and b, for a t in the domain $t_1 < t < t_2$ we can get F(t)

$$F_{t=} a e^{-bt} = (F_1 e^{\frac{\ln\left[\frac{F_1}{F_2}\right]}{(t_2 - t_1)}} t_1) e^{-\left\{\frac{\ln\left[\frac{F_1}{F_2}\right]}{(t_2 - t_1)}\right\}} t = F_1 e^{\left\{\frac{\ln\left[\frac{F_1}{F_2}\right]}{(t_2 - t_1)}\right\}} (t_1 - t)$$
(6)

Validation

A numerical validation test was set-up using a spreadsheet, as shown below, using a known analytical exponential function $F(t)=1.25e^{-0.675}$ The analytical values of the function were calculated for t=1 to t=13 and then the Regression values at the midpoint of each t interval were calculated with the equations derived here. The results were also plotted to demonstrate the ability of the regression formulas to predict F(t) values at other t.

,	A	В	C	D	E
1					
2	Analytical Model Using				
3	F(t)=a*EXP(-b*t)			Regression Model	
4	a =	1.25		Using th	e Derived formulas
5	b =	0.675		For example, for cell E8 Using	
6	t	F(t)		=B7*EXP((LN(B7/B8)/(A8-A7))*(A7-D8))	
7	1	0.636445526		t	F (t)
8	2	0.324050326		1.5	0.454136962
9	3	0.164992304		2.5	0.23122675
10	4	0.084006891		3.5	0.117730584
11	5	0.042772648		4.5	0.059943283
12	6	0.021777968		5.5	0.030520507
13	7	0.011088392		6.5	0.015539712
14	8	0.005645726		7.5	0.007912144
15	9	0.002874558		8.5	0.004028519
16	10	0.0014636		9.5	0.002051146
17	11	0.000745201		10.5	0.001044354
18	12	0.000379424		11.5	0.00053174
19	13	0.000193186		12.5	0.000270739

